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OBJECT: The purpose of this report is to present an investigatioq
of one of the classic papers on one-dimensional shock wav;s
in 6rder to promote understanding of this phenomenon, and to
present also an invoétigation of one of the modern theories

of propagation of spherical shock waves.

SUNHARY:‘ R. Becker's article "Stosswelle and Detonation" (1921) is’
examined in detail with respect to the theory of shock
waves. The Hugoniot relations are developed and are
shown to be ihdependent of friction and heat transfer

effects in the shock front.

4Thevtheory of propagation of spherical shocks, as deve-
loped by Kirkwood and Brinkley (1947) is discussed. |
Comparison of theoretical and experimentally measured
quantities is shown to demonstrate the validity of the

theory.

A glossary of hydrodynamical equations and a detailed

annotated bibliography is also given.
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Section I
ONE DIMENSIONAL SHOCK WAVES
INTRODUCTION |
It seems that Poisson1 was the first to find a simple wave solution of
the differential equation of one-dimensional flow of a gas at constant
" temperature, and J. Cha11132 observed that such a solution eguation can

not always be sclved uniquely for the velocity u,

To remedy this situation, Stokes> proposed to assume a discontinuity in
the velocity. He used the laws of conservation of mass and momentuﬁ to
. deduce two discontinuity conditions for an isothermal gas. Stokes was
the first to suggest the possibility that discontinuous pressure waves
might be propagated with velocities greater than that of éound. He
argued further that discontinuities would never occur physicaliy, be-
cause any téndency to form such a discontinuity would be counteracted

by viscous forces,

S. Earnshaw# first developed the laws of propagation of waves of finite
amplitude (as distinguished from sound wagves, which are assumed to be
infinitessimal) and investigated mathematically the building up of &
discontinuity. He realized from investigation of the flow of gases for
which pressure is a function of density only, that since the local velo-
city of propagation increasss across a compression wave, such a wave

would always be "gaining" on its front until a discontinuity would form,

1 S. D. Poisson - Memoire sur la theorie du son. Journal de 1tecole
polytechnique, 14éZ¢ cahier, 7, 319-392 (1808)

2 J. Challis - On the velocity of sound. Phil-Mag. 32, L94-499 (1848)
3 G. G. Stokes - On a difficulty in the theory of sound. Phil-Mag.
33, 349-356 (1848)
"4 3, Barnshaw - On the Mathematical Theory of Sound. Phil-Trans.
A 150, 133-148 (1850) _ ’
Page 2
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B. Hiemann5, without knowledge of Earnshaw's work, deyeloped his own
theory of the simple wéve, and obtained the general solution to the
flow problem by introducihg what is now known as MRiemann invariants."
He rediscoversd the theory of shocks and elaborated on it, but incor-

rectly assumed ths transition across a shock to be isentropic.

W, Jo M, Rankine6 developed conditions for cohservation of mass, momen-
tum, and enofgy across the discontinuity. He showed thﬁt no steady
adiabatic procsss in which the only forces are pressure—fofées can
represent a discontinucus change over a smali finite region from ons
constant state to another, He.propOSed that across this region a non-
adiabatic process accurs, rather than an adiabatic one,with heat being
exchanged among the particles of the fluid, but none being received fro@

outaide it.

Although Rnnkine'slwork is compatible with the principle of conservatipn
of energy, Rayleigh7 aﬁd Hugoniot8 were the first to point out clearly
~that inentropic. transition in a shock would violate this principle.
Hugoniét showed in fact, that for non-viscous flow without heat transfer
(eutsids the discontinuity) entropy must be conserved for continuous floﬁ,
and must change across a discontinuity. Lord Rayleigh showed that dissi-
pation is necessarily présent in a shock wave, and that entropy across

such a wave must hence increase,

n - .
5 B. Riemann - Uber die Fortpflanzung &bener Luftwellen von endlicher
Schwingungsweite - Gesammelte Werke, 1876, p 1lii or Abhandlungen der )

%esel%shaft der Wissenschaften zu Gbttingen. Math-Phys Klasse 8, 43,
1860

6 W. J. M. Rankine - One the thermodynamic theory of waves of finite longi-
tudinal disturbance., Phil-Trans. A 160, 277-288 (1870) '

7 4. Rayleigh - Aerial plane waves of finite amplitude Proc, RoYe Sec. A,

84, 247-284 (1910) "

H. Hugoniot - Sur la propagation du mouvement dans les corps et speciale-

ment dans les gaz parfaits. Journal de l'ecole polytechnique, 58, 1-125
. (1889) Page 3
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The earliest experimental wocrk was done by Mach9 and his coworkers, who
'demonétrated by various methods that shock waves spread with velocities

greater than that of sound.

The following discussion is a detailed theoretical investigation of one-

dimensional shock waves and derives almost all of the resultélobtained by
the earlier workers in the field by application of the principles of con-
servation of mass, momentum, and energy, and by ingenious mathematical

procedures,

The investiggtionAof one-dimensional sﬂock waves is well justified in a
paper which is supposed to bé primarily concerned with épherical shocks.
NotAonly is an understanding of one-dimensional shocks necessary for com-
prehension of sphericai shocks, but in the tréatment of one—dimensional.
shocks we are also able to reach some conclusions that apply to shock

waves in general.

~The following treatment follows that of BeckerlO fairly closely, but ad-
ditional mathematical steps and interpretations have been added, and

comments by Lewis and von Elbell have been included.
-9 E. Mach, Wiener Berichte, 72(1875), 75(1877), 77(1878)

10 R. Becker - Stosswelle und Detonation., Zeits. f. Phys. 8, 321(1921)

11 wcombustion, Flames, and explosion of Gases" B. Lewis and G. Von Elbe,
Agademic Press. Inc., New York, 1951

Page 4
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QUALITATIVE DISCUSSION OF SHOCK WAVE FORMATION
Befere proceeding with a detqiiod mathematical analysis of shock wave
formation, we might do well to become more ac@uainted with that phenomenon

on & mors gqualitative basis,

Let us consider a long tubs into which a piston is inserted at the left;.
the tubs being'filled uniformly with the gas of the»surrodnding atmosphers,
If we impqrt absiall vélocity, dw, to the piston, this movement causes a
weak compression wave to’tfavel to the right with the velocity of sound.
Then, at any given instant, the gas to the right of the wavefroqt is un-
changed and undisturbed, while the gas botween the wave-front and the
piston is comﬁressed an amount dp and has the velocity dw, If we now
incroésa the velocity of the piston by anether increment dw, a second

‘ weak compression wave will‘proceed to the right, By frequent repétition

of this precedure, the piston is brought to its final velocity, w.

Tﬁe compression waves that are stérted later.advance with greater velbcity
since the veloéity of sound is greater gp higher densities (or at higher
temperatures, if we assume the coﬁpression to be adiabatic), 3?5_?338?

the gas itself 'also has higher flow velocity. Hence, as newer waves "caﬁch-
up” with the older ones, the wave-front becomes increaéingly steeper! -

when older and newer waves are completely merged, a shock-wave with an

extremely large pressure gradient is formed.

Page 5
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A MATHEMATICAL INVESTIGATION OF SHOCK WAVES

The Formation of Shock Waves

We consider a tube as described in the previous section, but with unit
cross-sectional area, Let € denote the thickness of a very thin disk

of the gas in the tubs, let x Dbe the space coordinate measured along

the tubs, and let t denote time. Then we see that any property G
of a material particle along the tube is a function of x and t only,

Hence we may write

1 248 | 248 G
4t 2« T " ox

éx ' . .

where u = gt~ denotes velocity along the tube axis. Further, we may

show (ses Appendix 1) that

4€ du.
= ~ &5x

Since we have defined & as very small, we may consider all properties
constant within this thickness, If P denotes density, p pressure,
¥ internal energy per unit mass, we note that &£ contains the mass

p &, the momentum up €, and the energy p E(E~ -‘;:). Letting

P, representAthe mean pressufe acting on the surfaces of our disk, and
letting A be g_heatrtransfar coefficient, and M one of friction, thenm
from the principles of conservation of mass; mementum and energy, one

may write the following:

() S (p8)=o0

) fo(wp®)= - Bk

(20) 2o (pale~%1)= g[- Yeus) | 2 (237TH]

, P) .
where P = f}-/&sﬁ%and where the relation between M and the ordinary

Page 6
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viscosity coefficient mis T = %/a as dictated by the symmetric

property of the pressure tensor.12

The above three relations are easily modified into

G 3F - -p 3%
4 2
) % - ~(':r5;(p~/« 2a
: 4 du d
00 5 (p w B 5 2k B 3

The manipulations involved are shown in appendix II. If we introduce

entropy S through the relation ,
Tdsa'ds*pavng_Pé{g
then equation (3c) may be expressed as

“WoeT s - AR HOR)

which expresses the variation of $ with time, under the influence of
" u and X, i.e, friction and heat conduction.

Now, let us neglect heat transfer and friction, fof the sake of discussion.
This amounﬁ to setting X:/(:O , and hence, from equation (L), iét =0 .
This, in turn implies that S = constant, or that ‘the flow occurs adia-
batically and re.versibly..

Applying (1) to P , and using (3a) we find

(ga)- §%+u§ﬁ- +()%:O

Similarly, applying (1) to W , and making use of (3b) after setting

A<0, ’

12 weber and Gaus, Report. d. Phys. I, 1, p. 439
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If we postulate a gas for which P = p( P\ , (say an ideal gas for which
P = a‘PK where a® is a constant and k the ratio of heat capacities,)
the above becomss

2u 2w . L de 20 -
(Sb) gt‘.‘uax*—(’d'()—é(;):

Equations (5a) and (5b) may be sclved as follows, to yield soiutions of
the form u(X,&) ,(J(x,t) . We consider the x-t plane, in which th_é direction
of any line element (dx,dt) may be given by ¢ , where  is defined
by dx=¢dt, Along this line element, any function G(xY changes by
the amount  4a - (282 ¢ ~ 29) ax

If G is chosen as G=u~f(f), whers {- is any‘ function of p only, with
derivative f' , We find | '

diusfipl = (329~ §'5% ‘i’*ﬁ**fa’i‘)“-

By adding and subtracting ug: +{ %€Z within the parentheses, the

above may be transformed into

‘ —u P}
dlurfl ’[(za) “*Dv. + 0§ -af’ Sa)"‘{ ‘f'*'*ax “d’c
Referring to (5a) and (5b), we find that the right side of this expression

.vmiahes ifr
1,1 dp P el
-ul){ = ond - -
that :Ls,either ir
{. = —E; '—:—% amd $ = w ‘l%%

We now define for ease of notation, c*= %E . With this definition

the foregoing results may be written more concisely as
’ »{. = X -r%- and \f a W ®cC

But, since these are solutions which make d(u+¢)=0 , we find that
c .
(64) w+t sﬂ'—f’— df = Const, along curves ?]it = warc

and

v

i :
(6b) o - s TC; d(l’ = Const. dms ciarves %’é— a u-C
fo .

Page 8




e here denotes a constant of integration, which is evaluated by appli-
cation of initial‘conditions and found to be the density of the undis-

turbed medium,

If we introduce Riemann's’ notation, to improve on Becker's cumbersome

system, and define

o ° C—Tﬁ-( ) dv 13
= e r as indicated by R. H. Cole™’,
the above equations may be written more simpiy
&+t & = Const. along curves ‘i{{ = W tC

Now we shall apply these results to the piston in our infinite tube. ‘We‘

assume the piston at rest at x=0 and t=0 , let it bé accelerated uni-

férmly with an acceleration a for a time T and finally let it continue

- with constant velocity w«, . If we denote'quantities pei'taining to the

piston by the ‘subscrip;‘ S, the motion of the piston will be def‘ined by
v ‘ .

2
X, = ‘.2-_0..*.s

s LL;"ats (o( O<tS<T

bl

Y0
: Xg>~aTy, + 30T | ug=aT= «,  fr & 27

This motion is shown as curve C in the x-t plane (Fig. 1). ‘

In the entire vtube, u=0 , P;Po at time ©=0 . Since u-¢ then has the ,
same value everywhere on the x-axis (at t=0 >), and since the curves .
(éb), originating from the positive x-axis, fill the entire space be-
tween C and the x-axis, then in that entire domain, 4~ ¢ = const.
-Similarly, along the curves (éa), u+ ¢ = const, Hence, along the

curves (6a) both u and O must be constant, or both w and P must be

13 g, H. Cole - Underwater Explosions. Princeton University Press,
Princeton, New Jersey, 1948

"Page 9
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constant, ( (@ = const, implies ¢ = const.) But, along the x-axis,
(1.e, att=0 ), u=0, P =p, . This means that along the x-axis
¢ =0 also, and hence u=0 = O , so that the relation between

« and P that is valid everywhere is

(8) W= o = ( “ de  4p
- _ 5
=, el
Lumediately at the piston (i.e. along the.curve C), 4, is given, and
hence also P, by the above 'equation. Then from every point ( xs, 1)

on C, the line

(9) S | ‘%,%L)

on which P and w have the constant values s and tg,may be drawn,

For piston motion given by (7), the portion of the x-t plane between
the curve C and the x-axis is divided into three r_eéions by the two
lines (9) corresponding to t,=0 and t,= T, 1In the lowest region
W =0 , in the middle (shaded) region w véries from O to«, , and

in the upper region .« = w, (constant),

d
In a gas, where p =a?p™, jE = OC"K(?K* , whence

—_— g

. e

e f i ' Za..rz "‘%’
O':{rg-d(: = So.FZ (77. dp = K-\ P Po

. (’o °

If we now denote by ¢, the velocity of sound in the gas at the initial

_ Kt _
conditions, ¢, = O-R(u = , and we obtain from (8):

w= 25 (c-c,) , and from this
(10) - e -
sz(xi i)z"_\,,:l_,(_f_:‘l
Co Ps Pe = 2¢Co
The slopes of curves (6a) and (éb) then become
(11) » u+4C = [V '<—z..—‘-\_g A Co = Co + 5_2_'\*
e = A " 3.
w-c = W — _KZ‘-D\._—Co = - (e - 2 u)
Page 10
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It is important to notice that the solutions we have obtained cease to
be valid as soon as two of the lines (9) intersect, since at that poinﬂ
of intersection, W would be required to have two values at the same
time, Hence the analytic counterpart of one wave-front over~taking the
other is the intersection of two curves (9). The place X , and time

T of this over-taking are found by simultaneous solution of (9) with
~at, = ‘_‘%—‘at~qt (\(+\)-C

which is obtained by dlfferentlatlng (9) with re:pect to t s after
making use of (11) and (7) for replacing X, , 4, , S, by functions of

t

Then, we find

T - (K‘ts F %) , X = \5___2@ £2$ - Q.n_‘_

s *

For a = 200 "Vcec » o = 330mAe‘:K= b4, T oS s, e
find W, = 100 e , The first discontinuity will occur at X = 453m,
T =038 sec(fort,=0),

Also, by (10), m B .

© ’ °

Fig. 2 corresponds to the above example. It represents the distribution
of velocity along the axis of the tube at the times indicated, The
"stiffening" of the wave-front is easily recognized by the increasing
stéepness of these curves, Although Becker gave a curve of this type,
Fig. 2 is plotted from my computations. I plofted various lines of

the type (9), making use of (7) and (11), in Fig. 3. From this figure,

Fig. 2 is obtained easily by a cross-plot.

It is evident from the foregoing discussion, that the occurance of a
compression shock depends on the condition that within an adiabatic
wave-formation the waves traveling in a deﬁser medium tend to overtake
those in a less dense medium. This méans that the vélocity given by

{6a) 25 = t*.k(Jgiﬁ must increase with increasing density.
adsiabatic )
If we apply (8), the above condition becomes

301 OB
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But, the above expression may be written also as

%‘Ed:(%"apr '(—*d(b({" )

or, if we replace p by i- , we obtain (as demonstrated in appendix

IV) that this expression may be wriiten as

3

—x__ 4% : 4 3

_Zrd— vz Sinw Z\%<O,om.dv 70, the
A

¢ondition for the formation of compression shocks becomes

(55
avt )admbd{!c 70
From the foregoing we draw the conclusion that in a given medlum either

only compression or only rarefaction shocks can occur, not both, depend~
ing on whether (f:f is positive or negative.

d VL ndtﬂb‘“‘-

Necessity of Considering Heat Conduction and Friction

As mentioned before, the equations (5) are only applicable where heat
transfer and viscosity may be neglected. Hence, the foreg01ng solutlons
obtained from these equations are subject to the same limitations, Since
no real fluids are entirely devoid of these effects, equations (5) must
yield wrong answers when temperature gradienrs ( %i ) or rate of change
of volume ( %{ =-\J‘"%% ) exceed certain 1imits, This is evident from
inspection of equations (5). Tnese magnitudes, however, tend to exceed
any finite value in a shock wave, according to the foregoing discussion,

Hence, use of equations (5) is possible 6h1y until the disconiinuity occurs,

but is not valid at the shock wave,

Intuitively, when the wave front reacﬁes a dertain steepness, a further
indrease in steepness will be prevented by friction and heat conduction;
the flattenihg tendency will be just sufficient to counteract the tend-
ency for_steepening. The details of this interaction are too complicated
for mathematical description, since various sedondary waves are formed in
the process. We hence must be satisfied with investigation of the shock

iavq after it has become quasi-steady.

. Page 12
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Stationary Compression Shocks

"After the shock wave has reached a quaéi-steady state, we are able to

jnvestigate it using a coordinate system-thet moves with the shock. Our

problem‘reduces to integration of eguations (3) for the case where all

derivatives with respect to time vanish, Ve hence replace 4 by « -5

and obtain the following equations from (3)s
~\

w2l +p 3= .

VRO o (p -~ u

35X Y Bx ) = C
- Do oY
_ug;-‘;-: = \F—q&*)_‘:}.:i“)‘g +’\>a()\’\><)

One may integrate these eguations, as I have shown in appendix V, to

obtain the following results,

(]_Za) T o= MU
e ' ‘ ~ - ar
(12b) MZvr + p - 3 = 4 M S
’ - P L Mt R A A AL
(12¢) E o+ Jv = M7 - M ax

where M, J, F, are constants of integration, and energy E and tempera-

ture T may be considered ‘as functions of ¢y and ~

We seek relations between the values u,, ¢ . ﬁ , before the shock front

2

. and the values 4, pa, v, behind it, This is easily accomplished-when

ax

' we realize that only *&ithin the wave front do ‘:‘{ and T differ markedly

from zero. Hence, for any place outside the wave-front

: L o=
. LLL .
(13) M*u-x P = o~ Y =J
E-\—Jv“}_-,_M‘LJ‘L“.E*%‘\'P‘V’:[—:
Comparing two such places, denoted by subscripts 1 and 2,
W | M=
(1[4.&) : Uy T2
u u,;
e - - el N
(1Lb) £y * "n U’,, * P.‘.
= LN
(1[4.3) E| * ".—f:" + A o= EL + -}i‘-— Y .

Page 13




-Thesé‘fundamental equations are hence independent of friction A and

heat transfer A. They are identical to relations obtained by requir-

. . ‘ 1
ing conservation of mass, momentum, and energy, across the shock wave.

Hence, the mathematical artifice of introducing a discontinuity is

justified, (However, by thié means we obtain no insight into the

processes within the wave front),

Relations obtained for Compression Shocks

In order to obtain a clearer view of the meaning of equations (14), we
solve (lia) and (14b) for u,, and w, , then substitute the results intc

(l4c). We obtain

- (15a) W = o PP
- Uz
(15b) = WS = vF Fz-PR
'U"‘ -V,
(150) E'T-‘E\ = JZ(Fl‘* Pz)(v‘\‘vl)
Equation (15¢) is known as the Hugoniot equation., Note that this is
’ Ve . ,
different from EL‘E‘=‘-PChr, as would pertain to isentropic flow, but
’ v

that for small enough differencgs of E and'v‘the above apprbaches
A€ = pdv; which is the isentropic relation. It may be‘shownlh that
for the same volume chénge (15¢) will read to a larger <F=§-£ than

the corresponding isentropic relation.

The velocity of propagation, L], of the shock wave into a medium at rest,

and W , the velocity of flow behind the wave front are

(16) U= u = v \‘f’;f_rl
) Uy~ U Te—
W= u-u, = (U\;v’-) _ii__‘:g:\

Hence, given the state of the undisturbed medium (py,m )s and’ the
‘Mshock pressure", p,, plus an appropriate equation of stafe, we are

able to compute all other values.

14 This is done by Lewis and Von Elbe, op, cit.

Page 14
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We illustrate this for an ideal gas, where

(17a) pv = RT

and

am) e,- E.= & (. —-T)) where £, is the mean heat capacity
 between T_and T, .

" We let _
5 = Zlv
(18) 1( ' =T
™= Pp,
and obtain (Appendix VI)
T w+ 5,
o

(193) :T:l b w §‘ + !
agp) L - fr. TE T
Vo ()‘ T A cl

(19c) D> = pv, LIV
' &, —t

o . | i )z _
(19d) W™= pov, (& ~1) b

1) P, (& ~1) TEaT

. ® o kAt ' . . :
For a perfect gasl5, ¢ = e hence- C,‘| = e For a diatomic Aperf»ect

gasl5, K =4 , and hence S": &6 . If T is large compared to 6, (195)
indicates that T increases proportipnally to P . v‘Hence, we must intro-

duce § , as a function of T .

" 213, ) :
Becker calculated the figures given in Table 1, using <, = 4.78 «~

_45,‘(0"1—;“3‘—,’2 'which.he b'supposed to be good up to about 3000°C, {This expres-
sio_n')valid for-O, and CO,, was taken from Pier, Zeit.s. f. Elektrochem. |
15, 536 (1909) and 16, 897 (1910), and Siegel, Zeits. f. phys. Chem. 87,
641 (191&)1) Although ‘Lewis and Von Elbe state that this expression

is somewhat in error, Becker's work still serves to point out relative

magnitudes,

15 E. F. Overt. Thermédynamics, Mc-Graw-Hili Book Company, Inc.
New York, 1948. p. 187, equ. (7-12) ' ’
Page; 15
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With the above, ,We obtain & = 582+046x107>Ta  , and with
this § , (19a) becomes a quadratic in T, ., The other relations (19)

then yield all other required values. T, = 0°C,

" TABLE I
T T= %o T o w i (=) adian.
T g (°x) (m/‘“) ("/Su\ ) Ll ) ("K\d‘ "
2. 1,23 1.63 336 L52 175 1.63 330 -

s 176 2.8, 482 698 452 1l k26
10 256  3.88 705 978 725 3k.9 515

50 8.8 6.0, 220 2150 1795 29 79

100 1415 7.66 3860 3020 2590 699 950

500 A8 1115 12200 6570 5980 5560 1433

| 1000 70.0  1i.3 19100 9210 8560 14300 1710
2000 106.2  18.8 29000 12900 13210 37600 . 2070

3000 1344 22,3 36700 15750 15050 66900 2180

The total impulse N , which appears in the next-to-last column, is
an important measure for eyaluating the effect of a shock wave on an
obstacle, i is composed of the static pressure difference p=. - P,
and of the momentum of the gas behind the wave-front, pz_VVz. With
‘the valuq‘of V\’~from (16), and by substituting-'vi= é; ,

1 - (Pz“Pt) *(’zwz’ (F;'P.)%_L,MOL }F; = (T —1) l%_
In order to illustrate the foregoing calculations for a liquid, we use

Tammann's equation of statelé, which is valid up to very high pressures.

16 G, Tamann - Ann, Physik 37, 975 (1912)
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It is

T
= =
(0) » e T

where ¢, b, and K, are constants, The general relation for internal
l. energy, <SE = <, clTﬁ—(‘r.%J;—’_— - p) 4V then may be integrated
to yield :
(200) E = T T~ RV
If we define
(21) = p+rXx = v -
and apply (20 ) to the Hugoniot equation (l5c),-we obtain
| & (T - = % (plepi) (v -
and (20) is transformed into o '
p v = T V o

The above equations are structurally identical to those for a gas, so

that the solutions (19) can be carried over directly, Here,

'§‘= Z_ccj‘:+l -, and TT'v:.’ [ il , making
Lar L
(22) T ) TT""K, ) v -b . _ T~ &, D? = ¥ prk W5+
T Teal v ~Ta-o T, I B
, | el
Table II applies to ethyl ether, for which X= 2722atwm, C=.100% goc,
b=.94 %',m=t.3c%‘,¢=.se4;‘?‘z, Po=latm, T o= 0'C
. .. Tasce 1L .
P= (‘*'*"") (v —T“o.&‘do (T;“_T‘)sk&k‘d.. b (M/’u’)
100 1.6 _ 1.6 1260 -
1,000 - 15,6 15.6 C s
10,000 85 113 , 2680
20,000 123 211 3000 -
60,000 201 594 ' 5010
100,000 245 975 6430
Pags 17
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Structure of the Shock Wave

Becker investigated the structure of the wave~front by carrying out
the integration of equations (12) for gases in which %;and /vaul-
£111 certain requirements. The usefulness of his calculatidn% of
course, depends on how well a gas under considefation meets these
' reqﬁirements. For air, Becker admitted an error of about 10% in his
calculations for v , p , T, in the shock front, but he computed thick-
nésses of sﬁock fronts on the order of magnitude of molecular mean free
paths, However, for such magnitudes, the physics of continﬁé (hydrodynamis

can not apply, and Becker admitted his theory was inadequate,

Becker obtained the following shock front thicknesses-‘t , for air with
.Pl =1 atm, Ty = 0°C - | 1

po(ata) 2 5 10 100 1000 2000 3000
7L (em ) BT 117 66 165 5.2 3.6 2.9

(According t§ Kinetic theory of gases, the mean free path ét i atm,
0%C is about 90 X 10_7‘cm, and the mean.distance between molecules is
3.3 X 1077 cm). |
But Becker's'theory was vindicated by L. H, Thomas1? in 19L4. He showed
| o ' that all shock wavés in air are a few mean free paths thick, by consider-
ing the increase in the -coefficients of thermal conductivity and vis-
* cosity with increasing temperature and pressure, which Becker heélectbd,
and by application of Kinetié theory. | - |
Experimental substantiation of theories of processes‘within a shock front

is practically nil. The extremely transient nature of shock front péssage

17 L. H, Thomas - Note on Becker's Theory of the shock Front, J. Chem.
Phys., 12, pp L49-57 (November 19L4) "
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makes instrumentation a formidable problem, and besides makes knowledge

of conditions within the shock front of little practical significance.

G. R, Cowan and D, F. Hornigl8 developed equations for computation. of the
density profile of a shock wave from measurements of reflectivity. They
- also performed some measurements in nitrogen, keeping a constant F%7%i =
1.71, and var&ing (20 . The followiﬁg are their results:
P, (atm) 5,78 Lo63 2.86

L (107wm) 180 200 1320
The accuracy of their measurements is estimated at 25%; hence the above
values are slightly larger than those calculated by the Becker - Thomes
Theory. This discrepancy may be due to the assumptlon of hard-sphere
.molecules made by Thomas, which is not too good for a diatomic gas like

nitrogen. But agsumptions made by Cowan and Hornig may possibly lead to

a greater error in their work than was estimated.

18 ’ . -
- @. R, Cowan and D, F. Hornig, The Experimental Determination

of the Thickness of a Shock front in a Gas.

J. Chem, Phys. 18, 1008-18 (August 1950)
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Section 11

THE PROPAGATION OF SPHERICAL SHOCK WAVES

INTRODUCTION ’

Although Lerd Rayleigh7 solved the hjdrodynamic equations for plane
shocks nnalytically (iSSuming adiabatic relations between ﬁressure

and density), such an approach éaﬁ not be taken in the case of spherical
shock waves, ‘The difficulty arises from the spherical divergence terms

that appear in the partial differential equations that'deécribe spherical

motion,

A solution of the problem may of'coursé be obtained by numerical integration
" of the pertinent partial differential equations. Penney20, and later Penney
and Dasguptazl have carrisd out calculations of this kind for spherical INT
charges, fhey employed a method of integration based on the equations of
Riennnns, which greatly simplifies the ngmerical work and reduces the re-

‘: quired labor. But, evenbwith.this simplification, this method is extremely
tedious and complex., Purthermore, the Riemann equatlons apply only where
dilnip&&ioﬂ effects can be neglected, The desirability_of developing more

rapid and flexible methods is hence evident.
J. G. Kirkwood and H. A. Batha?? developed one such method, applicable to
underwater explesiens of spherical charges, However, they used the approxi-
nntion of adiabatic flow, neglecting the incfo&se in entropy at the shock
frent, This assumption is warranted for water,.because thé entropy in- '

crepent produced by a shock wave in liquids is very small, However; for

gases the entropy increase is not neglible,

20 y, G, Penney, British Report RC - 142 (1941)

21‘ W. G. Penney and H. K. Dasgupta, British Report RC - 333 (1942)

22 5. G. Kirkwood and H, A. Bethe. - Pressure waves produced by an under-
water explosion, I, OSRD 588 (1942)
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Aﬁother theory_of underwater shock waves has been preSentea bj Osborne
and Taylorza. This theory, however, is based upon the aéoustic approxi-
mation, and is hence strictly valid only for small excess pressures at
relatively large distances from.the source, Ihié approximation is also -
not valid for very large distances from the source, as indicated by

G. B. Whitham2h, |

The following theory, which we shall examiﬂe in detaii, was developed

by S. R. Brinkley, Jr., and J. G. Kirkwood25, It is superior to those
discussed above, and to others developed for shock waves in air, which
have been based on ideal gas adiabatics with constant heat cépacityzé.
Brinkley and Kirkwood account in their theory for the finite enﬁropy
increment occuring in the fluid due to passage of the shock wave. Hence,
this theory is equally valid for the propégation of shock waves in liquids
and in gases, ’ .

The development which follows is essentially that of Brinkley ana Ki;k-
wood; however, I have specialized it for application to sphericél shocks
:,(since their discussion applies to plane and cylindrical.flqw-also)and

I have inserted additional explanation and intermediate mathematical

steps where these seemed applicable.

2 F. M, Osborne and A. H. Taylor. - Nonlinear propagation of underwater
shock waves. Phys. Rev. 70, 322 - 8 (September 1, 15, 1946)

24" G, B. Whitham. - The propagation of spherical blast. Proc. Roy. Soc.
A, 203, 571 - 81 (October 2i, 1950) ' '

,25 S. R. Brinkley, Jr., and J, G. Kirkwood. -~ Theory of the Propégation
of Shock Waves. Phys,. Rev. 71, 606 - 11 (May 1, 1947)
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THE BRINKIEY AND KIRKWOOD THEORY

Brinkley and Kirkwood use a hybrid form of the hydrodynémic equations,
utilizing the Euler form of these equations, but intfoducing Lagrangian
Coordinates??, In order to dorive bthe equations as they are used in this
theory, we define the following symlools. |

Let v be the Euler coordinate at time t of on element of fluid with
Iagrange coordinate R , let e and p denote pressure and dens.1ty,

a.nd -let the subscript (0) refer to the undlsturbed fluld The Euler

velocity of sound ¢ , is given by <* = <3(’) ,and let P=p-pn .
; , s o

The equation of motion (conservation of momentum) in the Euler form, may

be written in vector notation 7as '

(23) Z—L{ ~ gp = O | , where W is the 'w‘re'locity vector.
For spherical flow, all quantities are functions enly of radius ¢ and

‘time t , and the velocity is purely radial. For this type of flow, (23)

becomes . ‘ _
| do (9_!9_
~—nn i —
where u 1s the particle veiocity or, u = (Q_'T.)
_ T 2t /w
But W=« (R)t) . , and Euler's notation means R = const.
Hence ‘
2~ (R)(39), - 39), - (32)
de T \ 2R Dt /g T Dt e ot v

We note that a spherical shell with radius R and thickness dR contains a
mass of fluid given by 4TWp. R' 4R, (R is by definition the
position in the undisturbed fluid of a volume element which at time t is

at v ), and that the same mass of fluid is contained in a spherical shell

26 G. I. Taylor The air wave surrounding an expanding sphere.Proc. Roy.

Soc A, 186, 273 - 92 (September 24, 1946) - This assumptlon fails badly
near the explosive source, A

See the "Glossary of Hydrodynamic Equations" near the end of this paper.
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of radius v and thickness dr , which contains a mass 4wsr-dv

Hence, at time t , ATP R*IR =z 4w o dr , from

which we find ( Dr\} e &2
LY ,
Then, considering P = p (R,&)

(ai) (2 (m) D6\ (2t) (22) e,
| | or otle\oR) T ol AR
Substituting the foregoing values into (2&), we obtain

Dy r ) '
r (’zt - —“e“f‘z (**E-) =0
v R g K oR /e .

or, as in the paper by Brinkley and Kirkwood,

(25a) R (2~}_> N .l.(,bf_) N
r* \Not/g o DR{“O
Since 4F = e} P
Euler's equatlon of continuity in vector notatlon appears as

@) 2. (v v) =0

" Agaln, constant R is mplied. Cons:.derlng p p (R, t) agaln,

then . : .
de . gode. ke (2 >< =) . (22) |- &(38).

Further, for spherlcal flow, and considering u = u (r,t),

V. v = ;‘72. (rlu_)

by the definition of V , for curvilinear coordlnateszs; or

s

s (S - (R (8B), -z
- (3)_‘:) |
~(’0E1 OR t

28 See for instance, H. Lass, "Vector and Tensor Analysis" McGraw-Hill
Book Co., Inc., New York, 1950. p 5&, equ, (89)




Substitution cf>the foregoing results into (26), and division by P

yields Kirkwood and Brinkley's form of the equation of continuity:

(@), e 2 _prt [ duy
A P (S:>R Yo eDR%.<SEt =0

Summarizing, we have the new equation of motion

2 (R, k(3

and the equation of continuity,
\ _D_P_) 7 da -
@) 25 (£0), ~ P——Pw (bR ~ 2 Lo
Equations (25) are to be solved subject to the initial condltions speci-
fied on a curve in the R, t—plane and to the Hugoniot conditions at the

ahock front (Appandlx VII):

= oouwll

(26) Plu=u) - e

- aH = Lp (—~ ~ ——\
o H here denotes the specific enthalpy increment experlencad by the
the fluid in traversing the shock front, and U is the velocity of the
shock front, (The Hugoniot conditions are seen to apply to apherlcal
shock. fronts also, since in their derivation no assumption as to the
" shape of the fronts was made).

At the shock-front itself, r = R, so that equations (25) for the shock

" front simplify to
(z5e) () N L

tig P\ IR N
(25&) ,p_ (g‘ét+ﬁ‘3v(1&)g ; % N

We define now a derivative in which the shock front is stationary by the

eperator 4 o +‘ dt 9! 3

= 2 = .= = 2 3 2
-aRr OR T R % M U S
- and apply this operator to the first of equations (26).
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After transformﬂtion we obtain (Appendix VIII)
(21) 2=- U?_&__Q.QE o 2P

2t R Pe 2@ T R ot =0
iﬁere o = U 94« _ ,_ ® J4J
- 9 SPTS \- T o7

We note that all of the coefficients of equations (25c), (25@); and (27)
may be expressed as functions of pressure alone by means of the Hugoniot
conditions (26) and an-appropriate'equation of-state éf the flﬁid. If we
dan find a fourth relation between the four partial derivatives, we would
be able to solve for each of the four derivatives as a function of P and

R and to formulate by means of‘the operator we defined previously, an

ordinary differential equation

' 4P _ OP 0 9P P R
(28) ﬁ‘g‘ﬁ-*uat‘?(ﬂ)

for the peak pressure P of the shock wave as a funcﬁion of the disténce
R. (Henceforth we shall use « and F> to dencote part1cle velocity and
excess pressure behind the shock front, and reserve the unprimed letters
for thesa quantities at the shéck front) | V
The physical basis for establishlng the desired fourth relatlon is the
ract that as a shock wave passes through a fluid, it leaves in its path

a residual internal energy increment in each element of the fluid. This
energy increment is determined by an éntropy changé produced by passage of
the shock front. As‘a fesult .the energybpfopagated by the shock wave
decreases with distance from the source,

Clearly, the work done by the shock wave after it passes a p01nt R 1is
ultimately transformed into internal energy. Consider the work W, done
by the source of initial radius @, , This work may be resolved into two
parts: that which is transformed into internal energy of the fluld at

a pressure p, 29 within a sphere of radius R, and that work which is

29

Note that passage of a shock front through a fluid element leaves it
at increased entropy and internal energy, from which it returns to the
initial pressure p, . Absence of heat transfer is assumed throughout.
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done on this sﬁherical surface by the: e#erhal fluid.

‘The first part of this work, Woi , may be found by integrating Edm be-
tween the initial and final spherical surfaces., The mass dm contained in
‘a spherical sheli of radius , and thickness d;. ,. is dm = 4Tp, v, tdv,
P, is used here because; the fluid is initially in the undisturbed state;
Hence, ' =

W, =SEdm= _‘mjapor:aq
\ . »

o a, This integral may
be evaluated if E = E (P ), is known; P being the peak pressure, and

if P = P (1, ) can be found.
The second part of the work, W, , , may be found from the definition of
mechanical work, as the integral of normal force times distance., Here,

our force is pressure times area of a spherical surface, and

o0

. : . 30
W,, = 4rr;' F(Plap,) widt
| 4 (R) |
“Hence, ’
(29) = -
F‘;_'_—: g E\Oaf‘oz'd(o + S r’"(P'—«-,a,) w' 4t

a. 1. (R

The term involving p, in the tire integraligives the product of . and
~the volume displacement of the fluid elément ’iriitiaily at R. This dis-
placeme}lt is obviously the sum of the outward volume displacement 'AV3 of
the inner boundary of the fluid (i.e., the expansion of the explosion pro-
. ducts) and the displacement of the volume of fluid initially between shells

of radii a, and R to shells of radii &’ and R’ . We may hence write

4Tl‘fo°|% rrw'dt = p, aVg « “ch L gt':z‘d‘”.‘.' jkﬂxdﬂl \
t.(R) . .a.' : ‘ ya_,

O ’ U4 ~! . ' .
30 Note that p'= P 4 P. » and udt is the displacement of a fluid element

in tire dt ; € (R) 4is the time of arrival of the shock front at R,
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or :
) - . LS )
41r[ Poriudt = p, aVy + 4wp,g (ﬁ--\) *dv,
r .
t.(R) a, . .
from the relation przdr = Pe r.2 dr, = between Euler and Lagrange

coordinates as previously derived,

If we now introduce h = E %;Fg a(?%), the Specific‘enthalpy incre-
ment, we find

sRE o r"drv
o.c o (o]

= ' R oy ‘ g
x T LI _—
ja:L(»o R Nl S

N

it

LY : R o S
A
Substituting then, (29) becomes >
30y Wo 5\“[)0 rdee +~ 208 aVg | g e Pl dt

4T Ja, ar +.(R) -

The time integral 1s assumed to vanish as the shock front paéses’to‘

infinite distance. subtracting from_(BO) its value at R =, we

obtain
© = s h()o Yozd(" - j I"’Fo (07- dro + S r* P.u,‘ d—t
b as R U R),
. from which
. = - ‘ )
(31) S k()o G Jfo = S ‘l""P'tA-, d._‘f.' = (E) :
' R tolR)

The energy of the shock wave at the point R is by definition the work
déne on thé fluid exterior to R.(Since total energy of shock wave is
energy expended from source to R plus energy expended outside R, the
energy remaining in the shock wave when it is.at R is the total energy
minus that expended between the source and R, or the energy expended

outside R). The shock wave energy at R is hence given by 4T D(R),

D(R) as written above does, however, depend on the size of the source, and
it is hence desirable to normalize the tine integral to a value which is

'indgpendent'of this factor. This is done by expressing the integrand as

«

a fraction of its initial value R2Pu, and choosing a reduced tine scale
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for which the initial slope of the integrand has unit value. Inasmuch

as the observed energy-time curves are approximately of the form R%Pue

it is convenient to use as a time unit the initial logarithmic slope of

‘the curve, defined by

“L‘ = - ,‘S)—t <Log P,bL,r'&)

ad T =, (R)
After the differentiation is carried out, this becomes

o
£

F

(32) R
M P
Then, D(R) may be expressed as

UVQ
aiv

A
w

o/
¢

(3_3) D(R) = R’;Pw/u.v

Cmere ¥ = v (=) = | §(R,T) AT,
T .—.. _..t__jf}_)_. and ,&(—\2‘,_‘_)

s

;T being given by

I

Elimination of between (32) and (33) yields the desired fourth re-

lation between the partial derivatives at the shock front:

R*Puv - . 2P

The set of equations (250), (25d), (27), and (34)is exact, involving

integrals of equations (25a) and (25b) for knowledge of -the reduced

energy-time function f£(R,7 ).

However, if f(o‘;r) is initially a monotone decreasing function of T,

£(R,¥) will remain so, and in fact will at larese R become asymptoti-

cally a quadratic function of T corresponding to the linear form of the

pressure-time curve that has been shown to be stable at large distances3le

31
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This means that V is a Ve:y‘slowly varying function of R, for which
sufficiently accurate estimates for many purposes may be made witﬁout
| explicit'ihtegration of the hydrodynamic equations, The assighment of
a value which is independent of R to v is equivalent to imposing a
similarity restraint on the energy-time eurve, This type ofxegtraint
has been used before, and has proven to bs a very reasonable assump-
tion.26’32

-
The initial energy-time and pressure-time curves‘of an explosionvwavé
are rapidly decreasing; Fo: an initial estimate of v , an expansion
of tﬁevloéarithm of the function in a Taylor series in time is appro-
, priaté. (The well-~known peak-approximation). - This corresponds to an
ekponential {LT) -~ T » which gives the result | v.; jg’e’-'rd‘)': V,

For the asymptotic quadratié energy-time curve, £ (7)) = (\'- Tr2)
sw T=2 amd $(T) =0 4o T 3y 2, we Aind

2

2
Y= (0-wayray = &

Q : :
As a convenient empirical

interpolation formula betwcen_thesc two values, Kirkwood and Brinkley

have dsed, in a different paper.33

1).>' P - %; e - e, _
in a series of calculations of the peak pressure distance curves for
spherical shock waves, . ‘
Equations (25¢), (25d), (27), and (34) may be sol&ed simultaneously for
the four partial derivatives, and an ofdinary differential équation forA

P as a function of R may be formulated with the aid of equ, (28) ,

32

G. Taylor -~ Similarity solutions to problems involving gas flow and
, shock waves, Proc., Roy. Soc. A. 204, p 8-9, (November z<, 1Y50)
3. G. Kirkwood and S. R. Brinkley, Jr., OSRD 484 (1945)
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A second ordinary differential equation relating D to R may be obtained

by differentiation of (31).

The results of the above manipulations {as indicated in appendixlx), may

be written in the following form,

(35)

where .

The functions L( P ),

D -
== -Ruem
4P =2pd : ©
ar T TV T MR - e
L(P) = pa (P
Py = . S
ML) PoU* 2. (1+g)— &
N @) = A(%) x 26 (- )
2(tvg) - a
G o= | - I
. Pc
. dU
g = | O aP
M(P ), N( P) can be evaluated as functions

of the pressure by means of the equation of state of the fluid and the

Hugoniot relations (26). (This is illustrated for the case of a perfect

gas,in appendix XI), The equations (35) may then be intégrated numerically

b} the use of standard methédth, provided the initial conditions are known,

The constants of integration may be determined in one of two ways:

(1) by the initial conditions at the boundary of the explosion pro-

ducts following detonation, or

(2) by an experimental pressure-time curve at a selected distance.

The first method is a theoretical one, and is based on the thermo-chemistry

connecting the ex@losive and its products, The study of detonation is a field

34

- See, for instance, J. B. Scarbrough, "Numerical Mathematical inalysis.n

Johns Hopkins Press, Baltimore, Md., 1930, pp2l8 ff.
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in itself, and is hencé beyond the'skopé of thié paper. Some discussion -
of this may be found in R. H. Cole's book "Underwater Explosions", and '
Brinkley and Kirkwood have published a paper35giving tables and graphs

for application of this £ype of boundary condition to numerical integration.
According fo Colé, the mést convenient inifiai’constants in this éase are
the initial’pressure andbéither the parameter A or the total shock-wave

‘energy.

'If the'semi—empirical approach is used, the natﬁral constants of integra-
tion to be chosen ére—the initial peak preséurg and the energy integral.
However, Cole mentions that iﬁ is difficult te evaluate the energy inte-
gral very accurétely frqm ex@erimental pressure-time éurves. Hence, ex—~
perimental data of peak presghre as a function of distance are often-used

finstead,‘for the'detgrminatioﬁ of initial conditions’from the e@uation for
~dP
&

I have not worked out a numeriéal example heré since the'computational
methods are wel; knownBA, and since relatively littie would be gainea by
such an example comparsd to thg time required for computation. (Note the

complexity of the equations derived in Appendix XI).

35 .
OSRD 1231 (1943). Calculation of detonation pressures for several

types of explosives,
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COMPARISON OF EXPERIMENTAL’DATA “ITH VALUES CALCULATED
'BY THE THEORY OF KIRKSCCD AND BRINKLEY

In Fig. 4. I have plotted the overpressure ratio M= P;fh against

o

reduced distance Z = The reason for this type of graph

w'hs oo
is based on the law of similarityBé, which'asserts'that pressure and

- other properties of a shocx wave will be unchanged if the scales of

length and time by which it is measured are changed by the same factor

as the dimensions of the charge. Jince the weight of the charge is .a

constant (density) times 1ts volume, multlolylno the welght by a factor

't amounts to multlplylng each linear dimension of the charge by fl/3
"Hence, the expression Z for reduced distance is constructed to make

-all properties as functions of Z independent of charge weight for a

3

(o =

glven explosive, For INT, the density is such that it makes 7 = 1.06

where . d is the diameter of a sphere having the same volume as the chdrge,

and Z is thus approximately_the distance frem the explosive source in -

charge diameter537;
Fig. 4. shows a theoretical curve for'exblosion of TNT spheres, as com-
puted by the method of Kirkwocod and Brinkley By the originators of the

method. Unfortunately, I was unzble to find data which are exactly com-

parable to the computed curve.

36 First stated by H. W, Hilliar, (British) department of Scientific
Research and Experiment report RE 142/19 (1919)
37 R. G. Stoner and B, Bleakney. "The Attenuation o“ spherical shock

waves in air," J. Appl. Fhys. 19, 670 ~678 (July, 19A8)
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,Inétoaq, the following data are shown plotted in Fig, 4.

Charges S Experimenters
3 3/k 1b pentolite spheres Stoner and Bleakney>!
Cylinders of TNT/CE, ranging Grime and Sheard>8

between 3 and 76 1lb,

The curve for the pentolite spheres is seen to approximate the theorstical
curve for TNT spheres very closely, and lies slightly above it'throughogt

 .the plotted range. Thi§ discrepancy may bé explained by the difference in
the explosives,’pentolite having approximatély a 5% superiority in pfessure

level over TNT, according to the experimenters.

Thé plot of data oﬁtained‘for TNT/CE is seen to be similar in shape to the
computed curve; but to iie a good deal above it, This difference may be
explained by sﬁperiority of TNT/CE to ordingry TNT, and by the fact that.
the experimental charges were cylindrical (with diamgtgr equal to height)
whereas the cdmputed curves applies to spherical chafgés. Further, phe
measurements were taken near the gfound, which'may result in somé distortion
- of experimental resuits.

As far as we may conclude from the above discussion,:the theofy of Erinkléy
and Kirkwood thus seems to be in good agreement with éxperimentally obtained

values,

38 : :
G. Grime and H. Sheard. "The experimental study of blast from bombs

and Eare'charges;" Proc, Roy. Soc. A 187, 357 (1946)
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GLOSSARY OF HYDRODYNAMIC EQUATIONS

Basic Approaches

Hydrodynamic relations may be expressed in two different forms, one

due to lagrange, the other due to Euler.

| 1. Lagrange's form describes fluid motioﬁ in terms of the paths of
individual particles, i,e. it.expresses the coordinates X, ¥, Z,
of particles as functions of time and three other parameters
'(usually taken as the initial conditions), tagrange's équations
are usually too cumbersome, but are advantageous for describing oﬁe—
dimensional'motion._

2. In Euler's form, an observer is‘considered at each point (X, Y 2),
and the-happenings at these points are observed in the course of.
time t, The fluid motion is deséribed by giving as functions of
X, ¥, 2, t, the velocity components u, y, w, of the particle fﬁat,
is at x, y, z, at time t.

3. The relation between the two systems is expressed by the equations

. x = u(x,y,z,4)
y =v (x4,%,4)
_ v ‘.W'(x,g,z,{\ |
where the dot denotes differesntiation with respect to t “in the
_Lagrangian form., 1

Conservation of Mass

1. Lagrange's Form

—— ) - a‘lx,ﬂlt)'
PA = O where A 2Ca, k<) i.e, ;he

‘Jacobian of x(a, b, ¢, t), y(a, b, c, t), z(a, b, ¢, t); a,b,c,

being the above mentioned parameters.

]



2. PRuler's Form

p) 2 p) D ‘
‘ 5‘% + 5x (pu) + 59 (pv) + Z(pw) =0
This may be written more simply in vector form,
a .
5.% ~ PV o) |
where the vector . W = Wi + V)} - W k,‘ l\, j, k. being

‘unit vectors in the x, y, 2z, diréctions, respectively,

Consarvation of Momentum

1. Lagrange's Form

"

.. dp _ ) CLE . 2P L
p¥X + £ o,_(>3+5.5- o, p2~5E -0

‘which ﬁny be written as

a2 Tevr T

where- W = uia +vjj+wlk .  Another common wéy this is

expresised is

dv _ ’
ae oh = .T es
v \ z_ e
or N FUV V/x(vx»:/)"» vh = Tos

2, Euier'»é‘Fom . . '
Bipw + (pus) + & love) * salpwd ™

.%_((Jv\ -~ %(Puv]ﬂ-g-:’(ev‘) + %((’W‘f) *

Wl R
i
o

p) ot
’SZ(("N\ + f;( (puw) + g-g(evw)-t—g;((’w) +

dr, in vector form
dy - , Ow v < a -
PEL PtV TP
"Conservation of Energy

1. Lagrange's form

. 2(px) . (pd) 2(p2) _
N i S
where Ebac = B + ,;_.(i‘~c31féf), E§eing internal

energy per unit mass,




In vector notation, the above may be written as
C c% [E+ ‘éV’t] + v(pwvw) =0
This may be reduced to §=D by using dE = v2p dp # Tds, and’
the equations of conservation of mass and momentum,
2, -Euler's'Form
PR RV

With W defined as above, and V= W +v* +w

DV xpPT -———\- P&Dx( +h)+(,v§_g(%"*k) +Pw23?i(%_—‘+k)%o

or

2 (L] » 2lew(Low] » Zlev(T0] - A feEn]] -0
or,.in vector form,

% {(J('%’—l*ﬁ)}’“ v[_()(‘l_‘{:l+h) w]- ='o'
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LIST OF SYMBOLS

acceleration

S

op

“heat capacity at constant volume

a function

P ad
1 - U 4P

enthalpy

totél impuisev

ratio éf heat capacities, or constaA§
thickness of shock frbnﬁ

mass

absolute pressure

Euler Coordinate
entropy -

time

_Specific volume

velocity componenfs
Cartesian coordinates
internal energy

a propérty, or 1 - (lﬁdg)z
enthalpy |
éohstants

functions of P

over pressure, p-p,
Lagrange coofdinate
;bsolute temperatufe
Shéck wave velocity

flow velocity behind wave front, or charge weight
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VY]
i)

f~’.
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2c¢v

§ = *!

‘ Heat;transfer coefficient

M _ friction or viscosity coefficient
3 Thickness of fluig disk
- {;i y °r Lafel
Po
P density
@ (5 a4
e

e

Reduced time, or a constant time

Subscript (0) denotes initial conditions or properties of the undisturbed

fluid.




